

XGC Fusion Code

XGC is a modern first-principles gyrokinetic code using particle-in-cell (PIC) technology for modeling the plasma in a tokamak fusion device.

XGC can handle complex geometry including the X-point and the scrape-off edge region. A field-following unstructured mesh is used in each poloidal plane.

Fig. 1: Unstructured triangular mesh in XGC maps the entire tokamak cross-section, including the divertor separatrix surface and irregular wall structure. Figure used ITER geometry with artificially coarsened mesh for a better visualization.

Performance and Scalability of XGC Fusion Code on Summit XGC CAAR Team

Performance Results

Compute Nodes	Grid Vertices	Total Electrons	CPU-only (sec)	CPU+GPU (sec)	Speed-up of (CPU+GPU) vs. CPU-only
32	3,751	901M	664.5	75.3	8.8X
64	7,495	1,802M	668.9	77.3	8.7X
128	15,004	3,604M	677.0	79.3	8.5X
256	30,001	7,209M	701.4	83.6	8.4X
512	61,078	14,418M	721.4	88.0	8.2X
1024	120,432	28,836M	740.7	93.7	7.9X

Table 1: XGC weak scaling study on SUMMIT

Fig 2: Scaling of XGC on Summit using problem optimized for Titan. A larger problem can show higher speedup factor.

Details

- Electron push is the most expensive computational kernel and optimized for GPU using CUDA Fortran to take advantage of texture memory.
- Multi-species collision is another expensive kernel and optimized using OpenACC for GPU.
- XGC uses ADIOS to achieve high performance in parallel I/O to NVRAM and parallel file system (300 GB/s on 32 nodes).
- XGC uses OpenMP over multiple cores and uses 1 MPI rank per GPU

CONCLUSIONS

- XGC already scaled to 90% of Titan.
- Our initial results suggest
 XGC has high performance
 on Summit by effectively
 using the Volta GPUs.
- Further scaling studies will be performed when a larger fraction of Summit will be available.